Sequential Spectral Learning to Hash with Multiple Representations
نویسندگان
چکیده
Learning to hash involves learning hash functions from a set of images for embedding high-dimensional visual descriptors into a similarity-preserving low-dimensional Hamming space. Most of existing methods resort to a single representation of images, that is, only one type of visual descriptors is used to learn a hash function to assign binary codes to images. However, images are often described by multiple different visual descriptors (such as SIFT, GIST, HOG), so it is desirable to incorporate these multiple representations into learning a hash function, leading to multi-view hashing. In this paper we present a sequential spectral learning approach to multi-view hashing where a hash function is sequentially determined by solving the successive maximization of local variances subject to decorrelation constraints. We compute multi-view local variances by α-averaging view-specific distance matrices such that the best averaged distance matrix is determined by minimizing its α-divergence from view-specific distance matrices. We also present a scalable implementation, exploiting a fast approximate k-NN graph construction method, in which α-averaged distances computed in small partitions determined by recursive spectral bisection are gradually merged in conquer steps until whole examples are used. Numerical experiments on Caltech-256, CIFAR-20, and NUS-WIDE datasets confirm the high performance of our method, in comparison to single-view spectral hashing as well as existing multi-view hashing methods.
منابع مشابه
Spectral Learning from a Single Trajectory under Finite-State Policies
We present spectral methods of moments for learning sequential models from a single trajectory, in stark contrast with the classical literature that assumes the availability of multiple i.i.d. trajectories. Our approach leverages an efficient SVD-based learning algorithm for weighted automata and provides the first rigorous analysis for learning many important models using dependent data. We st...
متن کاملCombining Competitive Learning Networks of Various Representations for Sequential Data Clustering
Sequential data clustering provides useful techniques for condensing and summarizing information conveyed in sequential data, which is demanded in various fields ranging from time series analysis to video clip understanding. In this chapter, we propose a novel approach to sequential data clustering by combining multiple competitive learning networks incorporated by various representations of se...
متن کاملRobust hashing for multi-view data: Jointly learning low-rank kernelized similarity consensus and hash functions
Learning hash functions/codes for similarity search over multi-view data is attracting increasing attention, where similar hash codes are assigned to the data objects characterizing consistently neighborhood relationship across views. Traditional methods in this category inherently suffer three limitations: 1) they commonly adopt a two-stage scheme where similarity matrix is first constructed, ...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملDeep Semantic-Preserving and Ranking-Based Hashing for Image Retrieval
Hashing techniques have been intensively investigated for large scale vision applications. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, most existing supervised hashing methods only construct similarity-preserving hash codes. Observing that semantic structures carry complementary information, we propose the idea of cotraining for ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012